6(n^2+3)=57

Simple and best practice solution for 6(n^2+3)=57 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(n^2+3)=57 equation:



6(n^2+3)=57
We move all terms to the left:
6(n^2+3)-(57)=0
We multiply parentheses
6n^2+18-57=0
We add all the numbers together, and all the variables
6n^2-39=0
a = 6; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·6·(-39)
Δ = 936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{936}=\sqrt{36*26}=\sqrt{36}*\sqrt{26}=6\sqrt{26}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{26}}{2*6}=\frac{0-6\sqrt{26}}{12} =-\frac{6\sqrt{26}}{12} =-\frac{\sqrt{26}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{26}}{2*6}=\frac{0+6\sqrt{26}}{12} =\frac{6\sqrt{26}}{12} =\frac{\sqrt{26}}{2} $

See similar equations:

| -22+10x=23+7x | | -144-4x=-12x+64 | | -x-32=10-3x | | 10-6d-10=2d-34 | | -113-2x=90-9x | | -113-2x=18+2x | | -6x-86=4x+114 | | -6-86=4x+114 | | 3x/4-5x-1/3=59/12 | | -18+4x=18+2x | | 3(5x=2)=2(3x-6) | | 12e+3=9e-15 | | -x-75=105-10x | | -53+6x=3x+22 | | 3x/2-5x-1/4=-1/2 | | -3t=4=19 | | r^2+8r−39=−99 | | 12.4=x+1.37*(10-x) | | 0.4(x+2.4)=2.6 | | -13-5x=-6x+16 | | 6e+3=8e-21 | | Xx18.28=67.33 | | -13-5x=-6+16 | | p+6+9=11 | | N-5=3x4 | | -93-2x=69-11x | | 10/15=14/x | | 12x-155=-6x+155 | | .5=(19.5-x)/19.5 | | .5=19.5-x | | 2(x-3)^2+4=24 | | -2(x-4)=5x-6 |

Equations solver categories